
METALICA: An Enhanced Meta Search Engine
for Literature Catalogs

Bethina Schmitt Andreas Schmidt

Information Systems Group
Institute for Program Structures and Data Organization

Universität Karlsruhe (TH)
Am Fasanengarten 5, D-76128 Karlsruhe, Germany

E-mail: { schmittschmidt } @informatik.uni-karlsruhe.de

ABSTRACT
Today there is an increasing if not confusing number of
services available for searching and acquiring literature.
This makes it more and more diff icult for a user to take
advantage of these new services. Our goal is to offer user
support by providing a meta engine which covers the
different services and unifies their access. Additionally, we
want to gain a number of synergy effects, enhancing
traditional bibliographic information with a combination of
complementary content and acquisition information. We
also provide the means for a direct comparison of
acquisition alternatives.

In this paper we present the design and implementation of
our METALICA system. By employing a domain model
and a global query language, heterogeneous services can be
handled in a uniform way. Technical and syntactical
homogenization is done by wrappers which consist of a
connection control component and a syntax analysis
component. Semantic homogenization is accomplished by
mediators which contain a query translator and an attribute
model translator. An integrator recognizes and unifies
duplicates and offers additional operations for grouping and
sorting, thereby supporting the user in the exploration of
large result collections. The user interface can offer
different views of the system´s functionality by utili zing a
Model-View-Controller architecture.

KEYWORDS: digital library, user support, meta approach,
distributed heterogeneous services, duplicate detection,
domain model, flexible user interfaces

1 INTRODUCTION
The World-Wide Web offers an increasing number of
services for search and acquisition of literature. The
spectrum ranges from conventional li brary OPACs (online
public access catalogs), across bibliographic databases,
technical report servers, electronically available periodicals,
full text archives, electronic document delivery services, to
publisher's catalogs and online bookstores.

Even though this development fundamentally improves the
availabilit y of literature, it also places more excessive
demands on the user. Especially in environments with a
great need for information, like universities, a user is
supposed to ask himself a number of questions: Where can
I search at all? Where should I search? Should I consult my
local library´s catalog first? Then I could check-out an
interesting book, at least sooner or later. Should I search an
online bookstore, which might hold additional information
for a document? Then I could determine its relevance
better, preventing me from acquiring a useless book. Do I
choose a text which is immediately available online? In that
case, the collection to choose from would be smaller and
less representative, but possibly more up-to-date.

All these degrees of freedom create an open market of
services for searching and acquiring literature. Competition
forces providers to continuously improve their services. For
a user to actually profit from this prospering and versatile
market, three conditions must be fulfill ed:

• A user must know different available services. There is
some support by marketplace providers which collect
references to existing services in a central starting
point. Link collections in the WWW serve the same
purpose.

• A user must evaluate different services. In the case of
search services he could initiate searches with different
providers. Meta search engines support this approach
in the WWW.

• A user must compare different services directly with
each other in order to be able to make a decision. In the
area of literature this task is yet unsupported.

In this paper we apply the idea of meta search engines to
the area of services for the search and acquisition of
literature. There are, however, significant differences
between a meta search engine for the WWW and the
literature domain, which makes a number of enhancements
necessary, but also provides an opportunity for a number of
new features. An example is support for the third condition,
enabling the user to make direct comparisons between
results of different services.

Section 2 explains how meta search engines operate in the
WWW, as well as the necessary adjustments and
enhancements for the area of literature. Section 3 outlines
the general architecture and operation of our system. In
section 4, we introduce our domain model and global query
language. Sections 5 and 6 deal with the implementation of
wrappers and mediators, which are required for
homogenizing the underlying services. Section 7 is
concerned with the integrator, which computes the final
result collection, thereby eliminating duplicates and
applying various structural operations. We support multiple
user interfaces, two of which are presented in section 8. A
list of related work appears in section 9. Section 10
concludes our paper with a summary and plans for future
work.

2 ENHANCING THE META APPROACH
Numerous search engines exist in the WWW. However,
each of them covers only a small, mostly disjunctive part of
the web [1]. Combined, they could provide much better
results. Meta search engines like MetaCrawler [2] or
Highway61 [3] pursue this idea. They do not keep data by
themselves, all underlying services remain autonomous.
They do offer a uniform interface to the user, allowing
automatic and parallel access to the different individual
services. This enables the user to concentrate on what to
search for, instead of forcing him to remember where or how
[4]. Further improvement can be achieved by eliminating
duplicates based on title or URL equali ty, by grouping
domains, and removing invalid links.

Compared to WWW search engines, services for the search
and acquisition of literature show the following
characteristics:

• The set of documents available from different service
providers overlap, e.g. the holdings of publishing
houses, bookstores, and libraries.

• Services are heterogeneous, they vary in query
expressiveness and the amount and style of available
document information. Examples are simple keyword
search, fielded search and results containing a table of
contents, proposed reader target groups, or availabili ty
for loan.

These two points show both potential for synergy and
challenges to be mastered when employing a meta approach.

We il lustrate synergies arising from the meta approach with
an example. For a specific book the meta engine can tap into
different services, obtaining in turn table of contents, cover
art, different reviews, local loan possibil ities, purchase
prices, delivery times, or versions available online. All these
information actively support the user in evaluating the
relevance of a book and show him the availability through
different channels.

When we transfer the meta approach to our domain a
number of challenges arise, most of which are due to the
heterogeneity of the underlying services:

• Queries: Different services vary in their query
possibili ties, both in the set of searchable attributes and
expressive power of the query language. Here, it is not
acceptable to be limited to the smallest common
denominator.

• Common schema: Conventional meta search engines
neither require nor offer a common schema for
representing their results. In order to semantically
process results of different providers and present them
to the user in a homogenized form we need to establish
a common schema.

• Complex Service Structures: To receive complete
information for a document from a service, it is
essential to follow additional links. Usually, the top
level result provides a list of abridged document
references. A second level then presents all available
information for a single document. For instance, to
obtain loan information from libraries it is necessary to
follow at least one additional link.

• Structural Analysis: Returned information for a
document (e.g. bibliographic citation) cannot be simply
passed through to the user. An internal structural and
semantic analysis, according to the common schema, is
needed for further post-processing.

• Detection of Duplicates: WWW meta search engines
can eliminate duplicates on the base of URLs. For
documents, not only is definition of equivalence more
difficult, but detecting and unifying them also requires
more efforts, depending on the chosen definition.

• Result Visualization:. Large result collections, as they
are expected from meta search engines, must be
appropriately visualized to be manageable by a user.
This becomes even more important in our domain,
where each result contains a wealth of information,
composed of a large number of attributes.

• Interactive Result Processing: Further user-level
support can be added by post-processing the result
collection [7]. Interactive operations like grouping and
sorting help in better understanding of the result´s
structure.

We have some more and rather general requirements for the
design and implementation of our system:

• Extensibility & Flexibility: The area of literature and
document information systems is a very active field
where rapid changes and advancements are to be
expected. Therefore, our system must be extensible to
be able to quickly integrate emerging services. It also
has to be flexible in order to cope with frequently
changing HTML interfaces.

• Fast Response Times: As with every interactive system,
fast response times are imperative. Since we cannot
influence response times of the underlying services, we
should at least minimize delays caused by our system.

Additionally, we want to keep the user informed about
progress by continuously updating the result collection
as new information comes in. Thereby, our system can
start displaying results on par with the fastest server,
instead of being forced to wait for the slowest one.

• Appropriate User Interface: Since it is difficult to
assess a user interfacé s suitabil ity in advance, we aim
for a flexible and easily configurable user interface. Our
approach is based on the Model-View-Controller
paradigm [6,15], where a system´s functionality is
decoupled from its screen presentation and reaction to
user input.

3 GENERAL SYSTEM ARCHITECTURE
Before we discuss each component in detail , we give an
overview of the architecture of the METALICA system. Our
design incorporates design ideas from meta search engines
[4] and the layered I3-Reference Architecture [8], see figure
1.

Figure 1: METALICA Architecture

In our approach, we are only concerned with bibliographic
services offering an HTML interface. These services keep
their autonomy and do not need to be modified in order to
participate in our system. METALICA accesses the
interface of each service, much like a user would do
manually.

A user can interact with METALICA by choosing one from
several available interfaces. Queries are transformed into a
global query language and passed to the integrator, which in
turn distributes it to the appropriate mediators. Each
mediator is associated with a data source and translates
queries into its specific language. The transformed request is
sent to a wrapper which establishes a connection with the
data source, executes the query, and receives the results.
Based on the local schema of the data source, the wrapper
performs a syntactical analysis of the results before they are
returned to the mediator. The next step is a translation of the

results, which are still in the local format of their data
source, into the domain model, which is done by the
mediator. The integrator continuously receives the results
from each mediator, identifies document entities, and joins
data records for identical entities. The resulting collection is
presented to the user in the style of the interface he selected.

4 DOMAIN MODEL & GLOBAL QUERY LANGUAGE
For achieving an integration of heterogeneous services, our
approach relies on the definition of a domain model in
contrast to common strategies for schema collation, e.g., [9].
A domain model covers relevant aspects within the field of
application independent of structures and attributes of actual
services. Therefore, a domain model is robust and remains
stable even if actual services undergo changes in attributes
or structures. A domain model is manually created by
experts. Additionally, transformation rules for mapping
attributes of services to the domain model must be defined.
Even though this approach is quite expensive, it nevertheless
is the only way to both obtain exactly relevant information
for a document and to present to the user acquisition
information that is directly comparable.

Essentially, document information falls into three
categories: bibliographic information, content information,
and acquisition information. In the process of creating the
domain model we developed a formal representation for
each of these categories. As a prerequisite, we include
information that is currently available from different
services and makes sense to a user, as well as information
that is needed internally for our system, e.g. for detecting
duplicates or visualization.

4.1 Bibliographic Information
Within the area of bibliographic citations a general
understanding has been reached on what kind of information
is essential for describing a document to a user. For this
purpose USMARC [10], defining several hundred attributes,
is too fragmented, whereas Dublin Core [11] is too
unspecific. Our model employs about the same level of
detail as bibliographic entries in the German RAK-WB1

(rules for alphabetical cataloging for scientific libraries,
[12]), which essentially corresponds to the AACR (Anglo-
American Cataloguing Rules [13]).

Our domain model contains the usual bibliographic features,
such as title, author[]2, publisher,
publishing date, edition, ISBN, ISSN, key
word[]3, subject heading[]4, and
classification[classification scheme5,
classification code]. Other attributes are
number_of_pages, language, and
type_of_publication, similar to BibTeX entries.
These attributes are needed to allow for enhanced queries,
like "German text books", performing operations on a result

1 Regeln für die Alphabetische Katalogisierung für Wissen-
schaftliche Bibliotheken
2 [] symbolizes set-valued attributes
3 uncontrolled vocabulary
4 controlled vocabulary
5 e.g. { (ACM,B.C.3), (DDC,005.019)}

collection, like grouping by type of publication or language,
or different visualizations, like a 3D view rendering number
of pages or type of publication.

4.2 Content Information
Recently, publishing houses and online bookstores have
been adding more and more varied information to their
documents. These pieces of information are very helpful for
a user in evaluating a document´s relevance or usefulness.
Consequently, our domain model contains attributes for:
text_description[]6, table_of_contents[]7,
cover_art8, full_text[], target_group[].

4.3 Acquisition Information
The handling of acquisition information is a very young
field and no common standard has yet been established.
Therefore, we designed this part of our domain model from
scratch, cooperating with experts from the library at the
University of Karlsruhe.

A user currently has a number of different acquisition
alternatives. Examples are local libraries, online orders from
publishers or bookstores, as well as full text archives and
electronic document delivery services. In our domain model
we provide the following representation:

provider[]9 of document references
 supplier[] of real documents
 name
 opening_hours
 reference_id e.g. shelf mark for libraries
 holdings[] only for periodicals
 from
 to
 num
 delivery[]
 format online, email , loan, read, ...
 time obtainability in hours/days
 cost
 location URL, reading room, check-out desk

A certain document can be available from different
suppliers, possibly in different formats. If the book is
supplied by a library it could be either immediately available
for loan from one branch or after a two-week waiting period
from another. It could also be available from a local
bookstore for a fixed price or as an electronic version, to be
downloaded from the given URL. Additionally, it might be
ordered from an online bookstore where it would be
delivered by mail within a certain timeframe for a certain
cost.

4.4 Global Query Language
The integrator component of our system expects all queries
to be expressed in terms of the global query language. The
actual query formulation at the user-level interface is

6 abstract, blurb, excerpt, review, ...
7 often available in several formats
8 URL
9 provider of a search service which references the
specified document

thereby independent from its internal representation. This
allows for experiments with different query interfaces
without having to change the global query language or
internal system components. Figure 6 shows one of the
currently available query interfaces.

METALICA is not restricted to queries based on
bibliographic or content search criteria. Rather, all attributes
of the domain model can be incorporated into a query.
Additionally, a typical query contains the list of providers to
be searched, required output fields, grouping and sorting of
the result collection, and limitations concerning response
times or result sizes. Finally, the preferred display format
can be chosen, see figures 7 and 8 for a plain text and Hi-
Cites view.

The corresponding internal representation is similar to SQL:

 SELECT list of output fields
 FROM list of sources
 WHERE search conditions
 GROUP BY grouping/sorting criteria
 OPTION performance restrictions
 VIEW AS view name

A search job formulated in such a way is subsequently
passed from the integrator to the mediators, which in turn
interact with the wrappers in a single or a number of queries
in order to obtain the requested result.

5 WRAPPERS
The wrapper layer achieves a technical homogenization of
the services. Each wrapper is responsible for transmitting a
given query to its data source, receiving the resulting
document, and extracting data fields needed by its mediator.
Therefore, a wrapper contains two principal components: a
connection control and a syntax analysis component.

The connection control component builds an HTTP request
for a given query, depending on the data sourcé s access
method (GET/POST). It then establishes a connection,
receives the resulting document, and is also responsible for
handling access errors. The result can optionally be
transcribed and translated to obtain a pure UniCode string
representation, which is internally used by Java. The
transcription thereby converts different character sets (e.g.
ISO Latin 1) and the translation replaces strings with other
strings (e.g. “ß” with “ß”). Consequently, each
connection control component can be parameterized with a
transcription and translation table.

The syntax analysis component parses the resulting
document, obtaining a representation in a simple object
model (OEM, [14]). The OEM supports both flat structures
for representing attribute-value pairs and hierarchies for
representing syntax trees. We employ the strategy design
pattern [15] which allows for a flexible exchange of syntax
analysis methods.

Conventional HTML wrappers are not concerned with
syntax analysis since they only deal with data sources which
already tag each semantic unit within their results. But we

do not wish to restrict the choice of data sources, therefore it
is not suff icient to rely on simple HTML/XML parsers. We
have developed a new method for syntax analysis which we
call hierarchical regular expression parsing. The
implementation is based on a special class library [16],
which supports the specification of regular expressions.

At this point, we omit a formal definition of hierarchical
regular expression parsing. Instead, we show the parser
grammar as it is used within the wrapper for the NCSTRL
service [17]. Figure 2 shows a top level result list and figure
3 the corresponding part of the specification file.

Within our implementation, all information needed for
parsing the result format of a source are stored in separate
specification files. This solution gives us the needed
extensibil ity and flexibili ty. Modifications of the result
format can be dynamically handled through adjustment of
the hierarchical regular expression, without requiring a re-
compilation of the wrapper. A new data source can easily be
integrated into our system by creating an appropriate
specification file.

6 MEDIATORS
Mediators translate queries expressed in the global query
language into one or a series of wrapper requests. The
returned results, which have already been syntactically
analyzed by the wrapper, are transformed into attributes of
the domain model. Mediators are equipped with knowledge
about the global query language and the domain model, as
well as the query syntax and result structure of its assigned
wrapper. According to these tasks, a mediator contains two

Figure 2: NCSTRL Result List

components: a query translator for the direction from
mediator to wrapper and an attribute model translator for the
reverse direction.

The query translator receives a request in the global query
language and translates it into a query execution tree. Such a
tree consists of nodes, representing either set operations,
fil ter operations, or expansion operations, and of leaves,
denoting queries which are passed to the wrapper, see figure
4. Set operations are needed to address sources which allow
only limited or no Boolean queries at all, like some
publisher catalogs. Fil ter nodes deal with query conditions
that are not supported in the query language of a given
source, e.g. language=german. Expansion nodes are
important for triggering follow-up queries which collect
information (e.g. loan information) that can only be obtained
by following additional links. Each tree node contains an
operation which is performed on the results of its children,
which in turn constitutes the result of the node. Finally, a
tree is processed if all nodes have been successfully
executed, starting with the leaves and continuing bottom-up
to the root.

So far, we implemented a query translator which is
configurable with a mapping table for attribute names and
includes set operators for union, intersection, and
difference.

Figure 3: NCSTRL Parsing Specification

Result <H3>Search Results
\(@HitCount:\d+@.*?</H3>
@DocList@<P>

DocList SPLIT[POSTFIX] "<p>" @Document@
Document <tr>

title

<i>\s*@Titel@\s*</i>
<tr>
Author\(s\)
<td [^>]*>\s*@Authors@\s*</td>
<tr>
Document ID
<td [^>]*>\s*@ID@\s*</td>
<tr>
Institution
<td [^>]*>\s*@Institution@</td>

Authors SPLIT[INFIX] "(?: and)|(?:,)"
@AExpr@

AExpr
@Author@

Author @FirstNames:.*@ @LastName@$
FirstNames SPLIT[POSTFIX] " " @FirstName@

"NCSTRL" -> $Catalogue
Result : Result
{

_ : Service
{

HitCount -> Count
}
DocList : Documents
{

Document : Document
{

Authors : Authors
{

AExpr : _
{

Author -> Author
}

}
TitleURL ->

[encapsulate($Catalogue,
 "SingleDoc")] TitleQuery

Titel -> MainTitle
ID -> ID

}
}

}

Figure 4: Query Execution Tree

The mediator´s second component, the attribute model
translator, changes the structure of OEM objects returned by
the wrapper. The received object contains values still
formatted in the structure of their source. The mediator now
rebuilds the object according to the structure of the domain
model. In this transformation process, information can be
discarded, completed, or converted, e.g. conversion of
currencies or language codes.

Figure 5: Mediator Specification

Similar to our syntax analysis approach we developed a
comprehensible specification language for mapping between
different attribute models. The language offers a high-level
abstraction for navigating an OEM-source-tree and
composing the corresponding OEM-target-tree. Examples of
operations that can be expressed in our language are
renaming of attributes, transformation of attribute values,
and the use of conditions and variables. Additionally, it is
possible to traverse existing trees structures and create new
ones. Again, we omit the formal language definition in favor
of an example for an attribute model translator specification.
In this example, which is shown in figure 5, the attribute
model translator is responsible for translating NCSTRL´s
results into the domain model. To remain flexible here as
well, all required definitions are kept in separate
specification files.

7 THE INTEGRATOR
Whereas wrappers and mediators homogenize the result
collection of each data source the integrator joins these
results together to the final result collection. Duplicates are
eliminated, depending on a configurable equivalence
relation. The remaining documents are then grouped and
sorted into a nested list structure. Finally, the model
component manages the result collection, thereby offering
operations for the list structure and single documents.

The duplicate detection component identifies equivalent
documents received from different services and collates
them into a single equivalence class, which is then used for
generating a representative document. For an
implementation, two additional points have to be
considered:

• Different definitions of document equivalence are
possible and must be supported. Often, it makes sense
to consider different editions of a book as equivalent.
But in other situations exactly the distinction is crucial
for a user, for example when he is only interested in the
second edition.

• To be able to offer a fast and responsive user interface,
we need to incrementally grow the final result
collection. Therefore, the integrator must be able to
continuously augment its result collection while new
documents and their affil iated information come in.

We implemented a generic strategy for duplicate detection
based on equivalence relations. The equivalence relation
currently in use is the n-gram method described in [18].
After normalizing the title and author[] values, we
employ tri-grams with a threshold value which linearly
depends on the total number of occurring tri-grams in both
character strings. Because the result collection grows
incrementally, equivalence classes cannot be computed in a
two or multi-level process, as it is usually done. Instead,
each document is compared with all existing equivalence
classes as it arrives. Thereby, it is either inserted into a
suitable existing or a newly created class. If additional
information arrive for a document its classification has to be
re-checked.

The grouping component is in design and function similar to
the duplicate detection component. It additionally supports
multi-level grouping of documents. It also manages the
nested document list where each level has an assigned
grouping criterion (e.g. year). Documents are grouped in
sublists which are identified by a descriptor (e.g.
year=1998). New documents are added to a group on the
base of these descriptors.

Two generic grouping strategies have been implemented.
Strategy 1 arranges documents with the same attribute value
into the same group, thereby generating a disjunctive
classification. Strategy 2 is suitable for set-valued attributes
and groups documents where the intersection of their
attribute values is not empty (e.g., one author in common).

The sorting component is called by the grouping component
when a new document has been added, effectively sorting
the specified group. If a new group has been created the list
is sorted on that grouṕ s level. Further work needs to be
done on a multi-language support within the sorting
component. So far, a language dependent sorting strategy
(ascending, descending) for single-valued attributes has
been implemented.

The model component maintains the final result collection
for a query. It also offers a number of operations on the
result collection, available for the other integrator
components and the view components of the user interface.
Namely, there are operations for:

• adding new and modifying existing documents,
• reading information for a document,
• reading and modifying the nested list structure,
• configuration of the duplicate detection, grouping, and

sorting strategies,
• issuing follow-up queries, and
• notifying observers for view synchronization.

8 THE USER INTERFACE
The user interface interacts with the user, allows him to
specify queries, and displays their results. The query
interface design takes the recommendations of [19] into
account, see figure 6. Data sources can be selected from a
list holding all available services. Another list allows the
user to choose attributes for display in the result documents.
Currently, queries can be formulated in two ways: simple
(fielded) and advanced queries. For the fielded search, the
user selects search attributes, which can be combined with
Boolean operators, and enters the search terms. The
advanced search is available for experts who want to
formulate unrestricted Boolean queries. A number of
additional options control the result size, response time, and
other parameters.

A search is explicitly started; we do not offer a designated
result preview. However, since we do grow and display the
result collection incrementally, a fast provider can serve as a
preview function.

Results can be displayed in a standard HTML text view or in
another view, which maps the result documents to a tree

Figure 6: Query Interface

Figure 7: HTML-Text-View

structure. Nodes and leaves correspond to document groups
and single documents, respectively. This interface has been
implemented as an applet with the Swing package, taking
advantage of Javá s internationalization feature.

All tree leaves offer the Hi-Cite functionali ty [20]. These
highlightable citations combine the advantages of a compact
textual representation with the clear structure of a table
representation. The Hi-Cite functionali ty is activated if the
mouse cursor remains on top of an entry. As a result, the
same attribute is highlighted in all the other documents. One
benefit is the straight and easy comparison of document
attributes, like cost or availabil ity.

Figure 8 shows the tree view for a result collection, grouped
in descending order by year and then in ascending order by
the first author. Here, the Hi-Cite function has been
activated for the ISBN attribute, highlighting the ISBN
numbers of all documents in red. Additionally, a tooltip
window reveals the name of the emphasized attribute.

A user can now rearrange the result collection by selecting
different grouping and sorting criteria or applying different
equivalence relations. In this case, the user interface calls
the corresponding operation within the interface of the
integrator´s model component. These operators then adjust
the nested list structure maintained by the integrator.
Finally, the model component notifies the affected
observers, causing the views to be re-drawed.

9 RELATED WORK
The Karlsruher Virtueller Katalog (KVK, [21,22]) is a very
successful meta engine for literature search. However, it can
only offer a uniform presentation of author, title, and year
information. Also, it neither offers duplicate detection nor
post-processing operations. Results are only displayed in a
standard text-based HTML interface. In order to obtain
further bibliographic, content, or acquisition information a

Figure 8: Tree-View with activated Hi-Cites

user has to manually follow many additional l inks, leading
to different providers. There is no support either for
acquiring documents or direct document comparison.

Medoc [23] is a meta search engine for different full-text
providers within the area of computer science. It requires
some coordination with the service providers. The document
supply is rather small , but all of these documents can be
obtained immediately, either free of charge or after buying
rights for online reading or printing. Since the set of
documents available from all providers is disjunctive, it
neither requires integration nor special support for the
comparison of acquisition alternatives.

DealPilot [25] is a shopping agent for online bookstores.
Given a document, DealPilot starts to collect acquisition
alternatives from at present 25 providers. The results are
presented in a table with a row for each online bookstore
and columns holding information about the prices of a book,
possible discounts, delivery costs, and delivery times.
DealPilot gives a user exceptional market control within the
restricted area of online book shopping by providing him
with a comprehensive survey of the market. Unfortunately,
DealPilot does not support libraries, full text archives, and
numerous other service providers, all of which are important
for obtaining scientific li terature and which should play a
competitive role in the overall market.

The Stanford InfoBus [24] provides a set of models and
protocols for accessing various kinds of information sources
and services. Using this very generic architecture based on
CORBA distributed object technology would cause much
overhead. In contrast, our METALICA system is both lean
and functional for practical use, especially tuned to the
genre of li terature services.

10 SUMMARY AND FUTURE WORK
Our METALICA system aims to assist a user in benefiting
from the prospering online market of literature search and
acquisition. By combining different services, we strike for a
number of synergy effects, making way for advanced user
guidance like a comprehensive, semantically homogenized
comparison of acquisition information, obtained from a
multitude of various service providers. METALICA applies
the idea of meta search engines to the area of literature
catalogs. We devised a number of enhancements that were
needed to overcome heterogeneity and to enrich user-level
support.

Heterogeneous services are integrated on the base of a
domain model, which we designed to incorporate all facets
of a document, including traditional bibliographic
information, diverse content information, and information
needed to acquire a physical or digital version of a
document from a commercial or public entity. Our global
query language decouples the user interface from the
system´s core functionality, permitting us to modify them
independently; an important aspect for further experiments,
e.g., in the area of novel query interfaces.

Wrappers and mediators deal with the syntactical and
semantic homogenization of the underlying services. For
syntax analysis we developed a new, particular method, the
so-called hierarchical regular expression parsing. Mediators
work two-fold: They receive queries formulated in the
global query language and create a query execution tree,
thereby automatically generating additional query nodes that
allow for the whole spectrum of query operations even on
data sources with limited capabilit ies. From the bottom up,
they translate the different local attribute models into the
domain model. We developed several formal languages
which are used for the specification of wrapper and mediator
configuration files. Modifications, for example changes in
the domain model or adjustments needed for reworked data
sources, can be dynamically handled by editing the affected
configuration files, without requiring a re-compilation of
any system component. A new data source can easily be
integrated by creating the appropriate specification files. All
this gives us the extensibili ty and flexibili ty which is so
much needed for a WWW-based meta system.

The integrator is the central system component, bridging the
gap between user interface and internal components. It can
quickly supply the user interface with results, dynamically
growing the final result collection as it receives data from
the mediators, thereby executing algorithms specially
designed to work incrementally, e.g. the duplicate detection
strategy. The integrator supports the user in the exploration
of large result collections by providing numerous post-
processing operations, like grouping or sorting. Since our
architecture incorporates the Model-View-Controller
pattern, the complete internal functionali ty is available for
any user interface. A user can tailor the result to his needs
by interactively operating on the result collection, for
instance by exchanging the equivalence relation applied for
duplicate detection. METALICA currently provides two
views for displaying the final result collection, one a text-

based HTML representation and the other a hierarchical tree
view complemented with Hi-Cite functionali ty.

So far, we integrated several library catalogs, a publisher's
catalog, and NCSTRL. Further services will be added. In
order to also cover a broader spectrum of services, we
currently evaluate the possible gain from including citation
indices.

We also plan to add more views to the user interface, if
possible by implementing adapters for existing visualization
components (e.g. a 3D library metaphor). Furthermore, we
currently prepare to conduct user studies on the different
query and result interfaces to obtain insights into their
relative performance and ease-of-use.

REFERENCES
1. S. Lawrence, C.L. Giles. Searching the World Wide

Web, in Science, 280(5360), April 1998.

2. MetaCrawler,
http://www.go2net.com/index_power.html

3. Highway61, http://www.highway61.com

4. E. Selberg and O. Etzioni. The MetaCrawler
Architecture for Resource Aggregation on the Web,
http://www.cs.washington.edu/research/metacrawler

5. Selberg, E. and O. Etzioni. Multi-service Search and
Comparison Using the MetaCrawler, in: Proc. of the
Fourth International World Wide Web Conference,
Boston, MA, December 1995.

6. G.E. Krasner and S.T. Pope. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80, Journal of Object-Oriented Programming,
1(3):26-49, August 1988.

7. M. Wang Baldonado. An Interactive, Structure-
Mediated Approach to Exploring Information in a
Heterogeneous, Distributed Environment, Ph.D.
Dissertation, Stanford University, December 1997.

8. Y. Arens, R. Hull, and R. King (eds.). Reference
Architecture for the Intelligent Integration of
Information, Program on Intell igent Integration of
Information, ARPA, Draft Version 2.0, 22. August
1995, http://mole.dc.isx.com/I3/html/briefs/refarch.pdf

9. M. Baldonado, S. Katz, A. Paepke, C. Chang, H.
Garcia-Molina, T. Winograd. An Extensible
Constructor Tool for the Rapid, Interactive Design of
Query Synthesizers, in: DL ´98, Pittsburgh,
Pennsylvania, June 1998.

10. USMARC Format for Bibliographic Data: Including
Guidelines for Content Designation. Cataloging
Distribution Service, Library of Congress, Washongton,
D.C., 1994.

11. S. Weibel, J. Kunze, C. Lagoze, M. Wolf. RFC 2413:
Dublin Core Metadata for Resource Discovery,
September 1998, ftp://ftp.internic.net/rfc/rfd2413.txt

12. K. Haller, H. Popst. Katalogisierung nach den RAK-
WB: Eine Einführung in die Regeln für die
alphabetische Katalogisierung in wissenschaftlichen
Bibliotheken, Saur: München 1991.

13. Anglo-American Cataloguing Rules, Amendments
1993, Ottawa: Canadian Library Association; Chicago:
American Library Association, ISBN 0838934315.

14. Y. Papakonstantinou, H. García-Molia, J. Widom.
Object Exchange Across Heterogeneous Information
Sources, in: Computer Society of the IEEE, Proceedings
of the Eleventh International Conference on Data
Engineering, Taipeh, Taiwan, March 1995, pp. 251–
260.

15. E. Gamma. Design Patterns: elements of reusable
object-oriented software, Addison Wesley, 1995, ISBN
0201633612.

16. Original Reusable Objects Inc., ORO-Matcher, Version
1.0.7., http://www.oroinc.com/

17. NCSTRL, http://cs-tr.cs.cornell.edu/

18. J.A. Hylton. Identifying and Merging Related
Bibliographic Records, Masters Thesis, M.I.T.
Department of EECS, 1996. http://ltt-
www.lcs.mit.edu/lt-www/People/jeremy/thesis/

19. B. Shneiderman, D. Byrd, B. Croft. Sorting Out
Searching. A User-Interface Framework for Text
Searches, in: Communications of the ACM, 41(4), pp.
95-98, April 1998.

20. M. Wang Baldonado, T. Winograd, Hi-Cites:
Dynamically Created Citations with Active
Highlighting, in: CHI ´98, Los Angeles, CA, April
1998.

21. Karlsruher Virtueller Katalog, http://www.ubka.uni-
karlsruhe.de/kvk.html

22. Dierolf, U. and Mönnich, M. Karlsruher Virtueller
Katalog. Neue Dienstleistung im World Wide Web, in:
Bibliotheksdienst, Heft 8/9, 1996.

23. A. Barth, M. Breu, A. Endres, and A. de Kemp. Digital
Libraries in Computer Science: The MeDoc Approach,
Lecture Notes in Computer Science 1392, Springer,
1998.

24. A. Paepcke, M. Baldonado, C.K. Chang, S. Cousins, H.
Garcia-Molina. Building the Stanford Infobus: A
Review of Technical Choices in the Stanford Digital
Library Project, June 1998. http://www-
diglib.stanford.edu/cgi-bin/WP/get/SIDL-WP-1998-
0096

25. DealPilot, http://www.dealpilot.com/

